Correlated Electron-Hole Transitions in Bulk GaAs and GaAs-(Ga,Al)As Quantum Wells: Effects of Applied Electric and In-Plane Magnetic Fields
نویسندگان
چکیده
The effects of crossed electric and magnetic fields on the electronic and exciton properties in semiconductor heterostructures have been investigated within the effective-mass and parabolic band approximations for both bulk GaAs and GaAs-Ga1−xAlxAs quantum wells. The combined effects on the heterostructure properties of the applied crossed electric/magnetic fields together with the direct coupling between the exciton center of mass and internal exciton motions may be dealt with via a simple parameter representing the distance between the electron and hole magnetic parabolas. Calculations lead to the expected behavior for the exciton dispersion in a wide range of the crossed electric/magnetic fields, and present theoretical results are found in good agreement with available experimental measurements.
منابع مشابه
Magnetoexciton dispersion in GaAs-(Ga,Al)As single and coupled quantum wells
We discuss magnetoexcitons dispersion in single and coupled GaAs − (Ga,Al)As quantum wells using the Bethe-Salpeter (B-S) formalism. The B-S formalism in the case of quantum wells provides an equation for the exciton wave function which depends on two space variables plus the time variable, i.e. the B-S equation is 2 + 1-dimensional equation. We compare the results for magnetoexcitons dispersio...
متن کاملElectron-hole transitions in self-assembled InAs/GaAs quantum dots: Effects of applied magnetic fields and hydrostatic pressure
A theoretical study of the effects of applied magnetic fields and hydrostatic pressure on the electron-hole transition energies in selfassembled InAs/GaAs quantum dots is presented. The effective-mass approximation and a model of a cylindrical-shaped quantum dot with in-plane parabolic potential have been used to describe the InAs/GaAs quantum dots. Present theoretical results are in quite good...
متن کاملEnergy Levels of InGaAs/GaAs Quantum Dot Lasers with Different Sizes
In this paper, we have studied the strain, band-edge, and energy levels of cubic InGaAs quantum dots (QDs) surrounded by GaAs. It is shown that overall strain value is larger in InGaAs-GaAs interfaces, as well as in smaller QDs. Also, it is proved that conduction and valence band-edges and electron-hole levels are size dependent; larger QD sizes appeared to result in the lower recombination...
متن کاملNumerical Modeling of Electronic and Electrical Characteristics of 0.3 0.7 Al Ga N / GaN Multiple Quantum Well Solar Cells
The present study was conducted to investigate current density of0.3 0.7 Al Ga N/ GaN multiple quantum well solar cell (MQWSC) under hydrostaticpressure. The effects of hydrostatic pressure were taken into account to measureparameters of 0.3 0.7 Al Ga N/ GaN MQWSC, such as interband transition energy, electronholewave functions, absorption coefficient, and dielectric con...
متن کاملPhotorefractive quantum wells: transverse Franz-Keldysh geometry
The photorefractive properties of semi-insulating AlGaAs-GaAs multiple quantum wells are described for the transverse Franz-Keldysh geometry with the electric field in the plane of the quantum wells. Combining the strong electroabsorption of quantum-confined excitons with the high resistivity of semi-insulating quantum wells yields large nonlinear optical sensitivities. The photorefractive quan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006